
-1-

A Read-Only Transaction Anomaly Under Snapshot Isolation
By Alan Fekete, Elizabeth O'Neil, and Patrick O'Neil

fekete@it.usyd.edu.au, {eoneil, poneil}@cs.umb.edu
Research of all authors was supported by NSF Grant IRI 97-11374.

Abstract. Snapshot Isolation (SI),
is a multi-version concurrency control
algorithm introduced in [BBGMOO95] and
later implemented by Oracle. SI avoids
many concurrency errors, and it never
delays read-only transactions. However
it does not guarantee serializability.
It has been widely assumed that, under
SI, read-only transactions always exe-
cute serializably provided the concur-
rent update transactions are serializ-
able. The reason for this is that all
SI reads return values from a single
instant of time when all committed
transactions have completed their
writes and no writes of non-committed
transactions are visible. This seems
to imply that read-only transactions
will not read anomalous results so
long as the update transactions with
which they execute do not write such
results. In the current note, however,
we exhibit an example contradicting
these assumptions: it is possible for
an SI history to be non-serializable
while the sub-history containing all
update transactions is serializable.

1. Definition of Snapshot Isolation
In what follows, we assume time is
measured by a counter that advances
whenever any transaction starts or
commits, and we designate the time
when transaction Ti starts as
start(Ti) and the time when Ti commits
as commit(Ti).
Definition 1.1: Snapshot Iso-
lation (SI). A transaction Ti exe-
cuting under SI conceptually reads
data from the committed state of the
database as of time start(Ti) (the
snapshot), and holds the results of
its own writes in local memory store,
so if it reads data it has written it
will read its own output. Predicates
evaluated by Ti are also based on rows
and index entry versions from the com-
mitted state of the database at time
start(Ti), adjusted to take Ti's own
writes into account. Snapshot Isola-
tion also must obey a "First Committer
(Updater) Wins" rule, explained below•

The interval in time from the start
to the commit of a transaction, repre-
sented [Start(Ti), Commit(Ti)], is
called its transactional lifetime. We
say two transactions T1 and T2 are
concurrent if their transactional
lifetimes overlap, i.e., [start(T1),
commit(T1)] ∩ [start(T2), commit(T2)]
≠ Φ. Writes by transactions active
after Ti starts, i.e., writes by
concurrent transactions, are not visi-
ble to Ti. When Ti is ready to commit,
it obeys the First Committer Wins
rule, as follows: Ti will successfully
commit if and only if no concurrent
transaction Tk has already committed
writes (updates) of rows or index
entries that Ti intends to write. See
also the discussion of the variant
First Updater Wins rule below.

The First Committer Wins rule is
reminiscent of certification in optim-
istic concurrency control, but only
items written by Ti are checked for
concurrent modification, not items
read.

In the Oracle implementation of
Snapshot Isolation (referred to as the
SERIALIZABLE Isolation Level in Oracle
[JAC95]), an attempt by Ti to read a
row that has changed since start(Ti)
will cause the system to read an ap-
propriate older version in the roll-
back segment. Indexes are also ac-
cessed in the appropriate snapshot
state, so that predicate evaluation
retrieves row versions current as of
the snapshot. The First Committer Wins
rule is enforced, not by a commit-time
validation, but by checks done at the
time of updating. If Ti and Tk are
concurrent, and Ti updates the data
item X, then it will take a Write lock
on X; if Tk subsequently attempts to
update X while Ti is still active, Tk
will be prevented by the lock on X
from making further progress. If Ti
then commits, Tk will abort; Tk will
only be able to continue if Ti drops
its lock on X by aborting. If, on the
other hand, Ti and Tk are concurrent,

-2-

and Ti updates X but then commits be-
fore Tk attempts to update X, there
will be no delay due to locking, but
Tk will abort immediately when it at-
tempts to update X (the abort does not
wait until Tk attempts to commit). For
Oracle we rename the First Committer
Wins rule to First Updater Wins; the
ultimate effect is the same – one of
the concurrent transactions updating a
data item aborts. Aborts by a transac-
tion for this reason are known as se-
rialization errors, ORA-08177 (Oracle
Release 9.2).

Snapshot Isolation is an attractive
isolation level. Reading from a snap-
shot means that a transaction never
sees the partial results of other
transactions: T sees all the changes
made by transactions that commit be-
fore start(T), and it sees no changes
made by transactions that commit after
start(T). Also, the First Committer
Wins rule allows SI to avoid the most
common type of lost update error, as
shown in Example 1.1.

2. Anomaly Behavior in SI
Most of the anomalies that occur in
lower Locking Isolation Levels such as
READ COMMITTED are absent in SI.
Example 1.1 gives an example.

Example 1.1. Lost Update. If
transaction T1 tries to modify a data
item X while a concurrent T2 also
tries to modify X, then SI's First
Committer Wins rule will cause one of
the transactions to abort, so the
first update will not be lost. E.g.,
in example history H1 below, we dis-
play the values read and written in a
versioned notation we use to specify
SI histories; when Ti writes a version
of X, the version is named Xi.

H1: R1(X0,50) R2(X0,50) W2(X2,70) C2
W1(X1,60) A1

This history leaves X with the value
70 (version X2), since only T2, at-
tempting to add an increment of 20 to
X, was able to complete. T1 can now
retry and hopefully add its increment
of 10 to X without interference. Note
that many database system products
with locking-based concurrency default

to the READ COMMITTED isolation level,
which takes long-term write-locks but
no long-term read locks (it only tests
reads to make sure they do not read
write-locked data); in that case, the
history above without the versioned
data items would succeed in both its
writes, causing a Lost Update. •

Despite its attractions, SI does not
ensure that all executed histories are
serializable, as defined in classical
transactional theory (e.g., in [BHG87,
PAPA86, GR93]). Indeed it is possible
for a set of transactions, each of
which in isolation respects an integ-
rity constraint, to execute under SI
in such a way as to leave the database
in a corrupted state. One such problem
is called "Write Skew".

Example 1.2. Write Skew. Suppose X
and Y are data items in different rows
representing checking account balances
of a married couple at a bank, with a
constraint that X+Y > 0 (the bank per-
mits either account to be overdrawn,
as long as the sum of the account bal-
ances remains positive). Assume that
initially X0 = 70 and Y0 = 80. Under
SI, transaction T1 reads X0 and Y0,
then subtracts 100 from X, assuming it
is safe because the two data items
added up to 150. Transaction T2 con-
currently reads X0 and Y0, then sub-
tracts 100 from Y, assuming it is safe
for the same reason. Each update is
safe by itself, but SI will result in
the following history:

H2: R1(X0,70) R2(X0,70) R1(Y0,80)
R2(Y0,80) W1(X1,-30) C1 W2(Y2,-20) C2

Here the final committed state (X1 and
Y2) violates the constraint X+Y > 0.
This problem was not detected by First
Committer Wins because two different
data items were updated, each under
the assumption that the other remained
stable. Hence the name "Write Skew". •

While Example 1.2 displays one of a
number of anomalous situations that
can arise in SI, the occurrence of
such situations is actually rather
rare in real-world applications. The
TPC-C benchmark application [TPC-C],
consisting of seven transactional pro-

-3-

grams, displays no such anomalies, and
it is reasonably representative. We
also point out that it is quite easy
to modify application or database de-
sign to avoid the anomaly of Example
1.2. One way is to require in the
transactional program that each Read
of X and Y to update Y give the im-
pression of a Write of X (this is pos-
sible in Oracle using the Select For
Update statement). Now it seems that
both X and Y are updated in H2 and
collision will occur. Another approach
requires that each constraint on the
sum of two accounts X and Y be materi-
alized in another row Z and insist
that all updates of X and Y must keep
Z up to date. Then the anomaly of his-
tory H will not arise, since collision
on updates of Z will occur whenever X
and Y are updated by two different
transactions.

3. A Read-Only Transaction
Anomaly in SI

Another type of anomaly can occur re-
sulting from read-only transaction
participation. As we explained in the
Abstract, this is surprising. Starting
with [BBGMOO95], it was assumed that
read-only transactions always execute
serializably, without ever needing to
wait or abort because of concurrent
update transactions. This seemed self-
evident because all reads take place
at an instant of time, when all com-
mitted transactions have completed
their writes and no writes of non-com-
mitted transactions are visible. The
implied guarantee is that read-only
transactions will not read anomalous
results so long as the update transac-
tions do not write such results. But
Example 1.3 shows this isn't true.

Example 1.3. Read-Only Transac-
tion Anomaly. Suppose X and Y are
data items in different rows repre-
senting a checking account balance and
a savings account balance, and that
initially X0 = 0 and Y0 = 0. In his-
tory H3 below, transaction T1 deposits
20 to the savings account Y, T2 sub-
tracts 10 from the checking account X,
considering the withdrawal covered as
long as X+Y > 0, but accepting an
overdraft with a penalty charge of 1

if X+Y goes negative; finally, T3 is a
read-only transaction that retrieves
the values of X and Y and prints them
out for the customer. For one sequence
of operations, this can result in the
following history under SI:

H3: R2(X0,0) R2(Y0,0) R1(Y0,0)
W1(Y1,20) C1 R3(X0,0) R3(Y1,20) C3
W2(X2,-11) C2

The anomaly that arises in this trans-
action is that read-only transaction
T3 prints out X = 0 and Y = 20, while
final values are Y = 20 and X = -11.
This can’t happen in any serializable
execution since if 20 was added to Y
before 10 was subtracted from X, no
charge of 1 would ever occur, and the
final balance should be 10, not 9. A
customer, knowing a deposit of 20 was
due and worried that his check for 10
might have caused a penalty, would
conclude he was safe based on the data
read by T3. Indeed, such a print-out
by T3 would be embarrassing for a bank
should the SEC ask how the charge oc-
curred. We also note that any execu-
tion of T1 and T2 (with arbitrary pa-
rameter values) without T3 present
will always act serializably. •

Intuitive Explanation of Example
1.3. In H3, T2 reads X0 = 0 and Y0 =
0, then writes X2 = -11, while T1 con-
currently updates Y1 to hold 20, which
would change the behavior of T2 if T2
started after T1 committed. The only
equivalent serial history ending with
X = -11 and Y = 20 must have T2 fol-
lowed by T1. But since concurrent
transactions don't see each other's
results in SI, T1 can commit first
(out of serial order). Now the read-
only transaction T3 can see the com-
mitted state of T1 only: Y = 20, and X
= 0, and conclude that the deposit
came in before the charge, implying
there would be no penalty charge when
T2 executes. The fact that SI allows
commit order different than serial
order is what causes the anomaly.

Conclusion There is great practical
value in understanding the properties
of database histories under weak iso-
lation (that is, with concurrency

-4-

control that does not automatically
guarantee serializable behavior). It
is especially important to understand
what can and can’t happen when running
under SI, in view of the wide commer-
cial penetration of the Oracle DBMS,
which implements SI. Several papers
have identified sufficient conditions
that can be checked for application
programs to guarantee serializable be-
havior for those applications [F99,
BLL00]. We are in the process of at-
tempting to develop a broad theory
which covers the anomalies of Example
1.2 and 1.3, along with numerous oth-
ers. We hope our theory will guide the
application designer to adjust the
programs without changing their func-
tionality, so that serializability is
guaranteed.

References

[BBGMOO95] H. Berenson, P. Bernstein, J. Gray, J.

Melton, E. O’Neil, and P. O’Neil. A Critique of ANSI

SQL Isolation Levels. Proc. of the ACM SIGMOD

International Conference on Management of Data, 1995.

Pages 1-10.

[BHG87] P. A. Bernstein, V. Hadzilacos, and N.

Goodman. Concurrency Control and Recovery in

Database Systems. Addison Wesley, 1987. (This text is

now out of print but can be downloaded from

http://research.microsoft.com/pubs/ccontrol/default.htm)

[BLL00] A. Bernstein, P. Lewis and S. Lu. Semantic

Conditions for Correctness at Different Isolation Levels.

In Proceedings of IEEE International Conference on Data

Engineering, 2000. Pages 57-66.

 [F99] A. Fekete. Serializability and Snapshot Isolation.

Proceedings of the Australian Database Conference,

Auckland, New Zealand, January 1999. Pages 201-210.

[GR93] J. N. Gray and A. Reuter. Transaction

Processing: Concepts and Techniques. Morgan

Kaufmann Publishers Inc., 1993.

[JAC95] K. Jacobs, with contributors: R. Bamford, G.

Doherty, K. Haas, M. Holt, F. Putzolu, B. Quigley.

Concurrency Control: Transaction Isolation and

Serializability in SQL92 and Oracle7. Oracle White

Paper, Part No. A33745, July, 1995.

[PAPA86] C. Papadimitriou. The Theory of Database

Concurrency Control. Computer Science Press, 1986.

[TPC-C] TPC-C Benchmark Specification, available at

http://www.tpc.org/

